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We describe the interplay between d-wave superconductivity and spin density wave �SDW� order in a theory
of the hole-doped cuprates at hole densities below optimal doping. The theory assumes local SDW order, and
associated electron and hole pocket Fermi surfaces of charge carriers in the normal state. We describe quantum
and thermal fluctuations in the orientation of the local SDW order, which lead to d-wave superconductivity: we
compute the superconducting critical temperature and magnetic field in a “minimal” universal theory. We also
describe the back action of the superconductivity on the SDW order, showing that SDW order is more stable
in the metal. Our results capture key aspects of the phase diagram of Demler et al. �Phys. Rev. Lett. 87,
067202 �2001�� obtained in a phenomenological quantum theory of competing orders. Finally, we propose a
finite temperature crossover phase diagram for the cuprates. In the metallic state, these are controlled by a
“hidden” quantum critical point near optimal doping involving the onset of SDW order in a metal. However,
the onset of superconductivity results in a decrease in stability of the SDW order, and consequently the actual
SDW quantum critical point appears at a significantly lower doping. All our analysis is placed in the context of
recent experimental results.
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I. INTRODUCTION

A number of recent experimental observations have the
potential to dramatically advance our understanding of the
enigmatic underdoped regime of the cuprates. In the present
paper, we will focus in particular on two classes of experi-
ments �although our results will also have implications for a
number of other experiments�:

�i� The observation of quantum oscillations in the under-
doped region of YBa2Cu3O7−� �YBCO�.1–6 The period of the
oscillations implies a carrier density of order of the density
of dopants. LeBoeuf et al.6 have claimed that the oscillations
are actually due to electronlike carriers of charge −e. We will
accept this claim here, and show following earlier work,7,8 in
which it helps resolve a number of other theoretical puzzles
in the underdoped regime.

�ii� Application of a magnetic field to the superconductor
induces a quantum phase transition at a nonzero critical field,
Hsdw, involving the onset of spin density wave �SDW� order.
This transition was first observed in La2−xSrxCuO4 with x
=0.144 by Khaykovich et al.9 Chang et al.10,11 have provided
detailed studies of the spin dynamics in the vicinity of Hsdw,
including observation of a gapped spin collective mode for
H�Hsdw whose gap vanishes as H↗Hsdw. Most recently,
such observations have been extended to YBa2Cu3O6.45 by
Haug et al.,12 who obtained evidence for the onset of SDW
order at H�15 T. These observations were all on systems
that do not have SDW order at H=0; they build on the earlier
work of Lake et al.13 who observed enhancement of pre-
existing SDW order at H=0 by an applied field in
La2−xSrxCuO4 with x=0.10.

We begin our discussion of these experiments using the
phenomenological quantum theory of the competition be-
tween superconductivity �SC� and SDW order.14–17 The
phase diagram in the work of Demler et al.14 is reproduced in
Fig. 1. The parameter t appears in a Landau theory of SDW
order and tunes the propensity to SDW order, with SDW

order being favored with decreasing t. We highlight a num-
ber of notable features of this phase diagram:

�A� The upper-critical field above which superconductiv-
ity is lost, Hc2, decreases with decreasing t. This is consistent
with the picture of competing orders, as decreasing t en-
hances the SDW order, which in turn weakens the supercon-
ductivity.

�B� The SDW order is more stable in the nonsupercon-
ducting “normal” state than in the superconductor. In other
words, the line CM, indicating the onset of SDW order in the
normal state, is to the right of point A where SDW order
appears in the superconductor at zero field; i.e., tc�0�� tc.
Thus inducing superconductivity destabilizes the SDW order,
again as expected in a model of competing orders.

�C� An immediate consequence of feature B is the exis-
tence of the line AM of quantum phase transitions within the
superconductor, representing Hsdw, where SDW order ap-
pears with increasing H. As we have discussed above, this
prediction of Demler et al.14 has been verified in a number of
experiments.

A related prediction by Demler et al.14 that an applied
current should enhance the SDW order also appears to have
been observed in a recent muon spin-relaxation
experiment.18

A glance at Fig. 1 shows that it is natural to place19 the
quantum oscillation experiments1–6 in the nonsuperconduct-
ing phase labeled “SDW.” Feature B above is crucial in this
identification: the normal state reached by suppressing super-
conductivity with a field is a regime where SDW order is
more stable. The structure of the Fermi surface in this normal
state can be deduced in the framework of conventional spin
density wave theory, and we recall the early results of Refs.
20 and 21 in Fig. 2. Recent studies22,23 have extended these
results to incommensurate ordering wave vectors Q, and find
that the electron pockets �needed to explain the quantum
oscillation experiments� remain robust under deviations from
the commensurate ordering at �� ,��. The present paper will
consider only the case of commensurate ordering with Q
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= �� ,��, as this avoids considerable additional complexity.
The above phenomenological theory appears to provide a

satisfactory framework for interpreting the experiments high-
lighted in this paper. However, such a theory cannot ulti-
mately be correct. A sign of this is that within its parameter
space is a nonsuperconducting non-SDW normal state at H
=0 and T=0 �not shown in Fig. 1�. Indeed, such a state is the
point of departure for describing the onset of the supercon-
ducting and SDW order in Ref. 14. There is no such physi-
cally plausible state, and the parameters were chosen so that
this state does not appear in Fig. 1. Furthermore, we would
like to extend the theory to spectral properties of the elec-
tronic excitations probed in numerous other experiments.
This requires a more microscopic formulation of the theory
of competing orders in terms of the underlying electrons. We
shall provide such a theory here, building upon the proposals
of Refs. 7, 8, 24, and 25. Our theory will not have the prob-
lematic H=0, T=0 normal state of the phenomenological
theory, and so cannot be mapped precisely onto it. Neverthe-
less, we will see that our theory does reproduce the key
aspects of Fig. 1. We will also use our theory to propose a
finite temperature phase diagram for the hole-doped cu-
prates; in particular, we will argue that it helps resolve a
central puzzle on the location of the quantum critical �QC�
point important for the finite temperature crossovers into the
“strange metal” phase. These results appear in Sec. IV and
Fig. 10.

The theory of superconductivity,27 mediated by exchange
in quanta of the SDW order parameter �� , has been successful
above optimal doping. However, it does not appear to be
compatible with the physics of competing orders in the un-
derdoped regime, at least in its simplest version. This theory
begins with the “large Fermi-surface” state in panel �d� of
Fig. 2, and examines its instability in a BCS/Eliashberg
theory due to attraction mediated by exchange in �� quanta.
An increase in the fluctuations of �� is therefore connected to
an increase in the effective attraction, and consequently a

strengthening of the superconducting order. This is evident
from the increase in the critical temperature for superconduc-
tivity as the SDW ordering transition is approached from the
overdoped side �see, e.g., Fig. 4 in Ref. 28�. Thus rather than
a competition, this theory yields an effective attraction be-
tween the SDW and superconducting order parameters. This
was also demonstrated in Ref. 14 by a microscopic compu-
tation in this framework of the coupling between these order
parameters. It is possible that these difficulties may be cir-
cumvented in more complex strong-coupling versions of this
theory28 but a simple physical picture of these is lacking.

As was already discussed in Ref. 14, the missing ingredi-
ent in the SDW theory of the ordering of the metal is the
knowledge of the proximity to the Mott insulator in the un-
derdoped compounds. Numerical studies of models in which
the strong local repulsion associated with Mott insulator is
implemented in a mean-field manner do appear to restore
aspects of the picture of competing orders.29,30 Here, we shall
provide a detailed study of the model of the underdoped
cuprates proposed in Refs. 7, 8, 24, and 25, and show that it
is consistent with the features A–C of the theory of compet-
ing orders noted above, which are essential in the interpreta-
tion of the experiments.

As discussed at some length in Ref. 8, the driving force of
the superconductivity in the underdoped regime is argued to
be the pairing of the electron pockets visible in panel �b� of
Fig. 2. Experimental evidence for this proposal also appeared
in the recent photoemission experiments of Yang et al.31 In
the interests of simplicity, this paper will focus exclusively
on the electron pockets, and neglect the effects of the hole
pockets in Fig. 2. Further discussion on the hole pockets and
the reason for their secondary role in superconductivity may
be found in Refs. 8, 24, and 25.

The degrees of freedom of the theory are the bosonic
spinons z� ��= ↑ ,↓�, and spinless fermions g�. The spinons
determine the local orientation of the SDW order via

�� = z�
��� �	z	, �1.1�

where �� are the Pauli matrices. The electrons are assumed to
form electron and hole pockets as indicated in Fig. 2�b� but
with their components determined in a “rotating reference
frame” set by the local orientation of �� . This idea of Fermi
surfaces correlated with the local order is supported by the
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FIG. 1. �Color online� From Ref. 14: phase diagram of the com-
petition between superconductivity �SC� and spin density wave
�SDW� order tuned by an applied magnetic field H, and a Landau
parameter t controlling the SDW order �the effective action has a
term t�� 2, where �� is the SDW order�. The labels identifying Hc2,
Hsdw, and tc�0� have been added to the original figure �Ref. 14� but
the figure is otherwise unchanged. The dashed line does not indicate
any transition or crossover; it is just the continuation of the line CM
to identify tc�0�. A key feature of this phase diagram is that SDW
order is more stable in the metal than in the superconductor, i.e.,
tc�0�� tc.

I n c r e a s i n g S D W o r d e r
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FIG. 2. �Color online� Fermi-surface evolution in the SDW
theory �Refs. 20 and 21�. Panel �d� is the large Fermi-surface state
appropriate for the overdoped superconductor. The SDW order pa-
rameter, �� , describes ordering at the wave vector Q= �� ,��, and
mixes fermion states whose wave vectors differ by Q. This leads to
the SDW metal state with electron �red� and hole �blue� pockets in
panel �b�, which is the state used here to explain the quantum os-
cillation experiments �Refs. 1–6�.
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recent scanning tunnel microscopy �STM� observations of
Wise et al.32 Focusing only on the electron pocket compo-
nents, we can write the physical electron operators c� as7,8

c↑ = eiG1·r�z↑g+ − z↓
�g−� + eiG2·r�z↑g+ + z↓

�g−� ,

c↓ = eiG1·r�z↓g+ + z↑
�g−� + eiG2·r�z↓g+ − z↑

�g−� , �1.2�

where G1= �0,�� and G2= �� ,0� are the antinodal points
about which the electron pockets are centered. We present an
alternative derivation of this fundamental relation from spin
density wave theory in the Appendix.

Note that when z�= �1,0�, Eq. �1.1� shows that the SDW
order is uniformly polarized in the z direction with ��
= �0,0 ,1�, and from Eq. �1.2� we have c↑=g+�eiG1·r+eiG2·r�
and c↓=g−�eiG1·r−eiG2·r�. Thus, for this SDW state, the �
labels on the g� are equivalent to the z spin projection, and
the spatial dependence is the consequence of the potential
created by the SDW order, which has opposite signs for the
two spin components �as shown in the Appendix�. The ex-
pression in Eq. �1.2� for general �� is then obtained by per-
forming a spacetime-dependent spin rotation, determined by
z�, on this reference state.

Another crucial feature of Eqs. �1.1� and �1.2� is that the
physical observables �� and c� are invariant under the follow-
ing U�1� gauge transformation of the dynamical variables z�

and g�:

z� → ei
z�; g+ → e−i
g+; g− → ei
g−. �1.3�

Thus the � label on the g� can also be interpreted as the
charge under this gauge transformation. This gauge invari-
ance implies that the low energy effective theory will also
include an emergent U�1� gauge field A�.

We will carry out most of the computations in this paper
using a “minimal model” for z� and g� with the imaginary
time ��� Lagrangian7,8

L = Lz + Lg, �1.4�

where the fermion action is

Lg = g+
†���� − iA�� −

1

2m�
��− iA�2 − ��g+

+ g−
†���� + iA�� −

1

2m�
��+ iA�2 − ��g−, �1.5�

and the spinon action is

Lz =
1

t �	
�=1

N

�
��� − iA��z�
2 + v2
��− iA�z�
2�

+ i��	
�=1

N


z�
2 − N�
 . �1.6�

Here the emergent gauge field is A�= �A� ,A�, and, for future
convenience, we have generalized to a theory with N spin
components �the physical case is N=2�. The field � imposes
a fixed length constraint on the z�, and accounts for the self-
interactions between the spinons.

This effective theory omits numerous other couplings in-
volving higher powers or gradients of the fields, which have

been discussed in some detail in previous work.7,8,24,25 It also
omits the 1 /r Coulomb repulsion between the g� fermions—
this will be screened by the Fermi-surface excitations, and is
expected to reduce the critical temperature as in the tradi-
tional strong-coupling theory of superconductivity. For sim-
plicity, we will neglect such effects here, as they are not
expected to modify our main conclusions on the theory of
competing orders. Nonperturbative effects of Berry phases
are expected to be important in the superconducting phase,
and were discussed earlier;7 they should not be important for
the instabilities toward superconductivity discussed here.

As has been discussed earlier,7,8 the theory in Eq. �1.4�
has a superconducting ground state with a simple
momentum-independent pairing of the g� fermions �g+g−�
�0. Combining this pairing amplitude with Eq. �1.2�, it is
then easy to see7,8 that the physical c� fermions have the
needed d-wave pairing signature �see Appendix�.

The primary purpose of this paper is to demonstrate that
the simple field theory in Eq. �1.4� satisfies the constraints
imposed by the framework of the picture of competing or-
ders. In particular, we will show that it displays the features
A–C listed above. Thus, we believe it offers an attractive and
unified framework for understanding a large variety of ex-
periments in the underdoped cuprates. We also note that the
competing order interpretation of Eq. �1.4� only relies on the
general gauge structure of theory, and not specifically on the
interpretation of g� as electron pockets in the antinodal re-
gion; thus it could also apply in other physical contexts.

Initially, it might seem that the simplest route to under-
standing the phase diagram of our theory �Eq. �1.4�� is to use
it to compute the effective coupling constants in the phenom-
enological theory of Ref. 14. However, such a literal map-
ping is not possible because, as we discussed earlier, the
phenomenological theory does have additional unphysical
phases. Rather, we will show that our theory does satisfy the
key requirements of the experimentally relevant phase dia-
gram in Fig. 1.

A notable feature of the theory in Eq. �1.4� is that it is
characterized by only two dimensionless couplings. We as-
sume the chemical potential � is adjusted to obtain the re-
quired fermion density, which we determine by the value of
the Fermi wave vector kF. The effective fermion mass m�

and the spin-wave velocity then determine our first dimen-
sionless ratio

�1 �

kF

m�v
. �1.7�

Although we have inserted an explicit factor of 
 above, we
will set 
=kB=1 in most of our analysis. Note that we can
also convert this ratio to that of the Fermi energy EF
=
2kF

2 / �2m�� and the energy scale m�v2:

EF

m�v2 =
�1

2

2
. �1.8�

From the values quoted in the quantum oscillation
experiment,1 m�=1.9me and �kF

2 =5.1 nm−2, and the spin-
wave velocity in the insulator v�670 meV Å, we obtain the
estimate �1�0.76. We will also use
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m�v2 � 112 meV, �1.9�

as a reference energy scale.
The second dimensionless coupling controls the strength

of the fluctuations of the SDW order, which are controlled by
the parameter t in Eq. �1.6�. Tuning this coupling leads to a
transition from a phase with �z���0 to one where the spin
rotation symmetry is preserved. We assume that this transi-
tion occurs at the value t= tc�0� in the metallic phase �the
significance of the argument of tc will become clear below�:
this corresponds to the line CM in Fig. 1. Then we can char-
acterize the deviation from this quantum phase transition by
the coupling

�2 � � 1

tc�0�
−

1

t
� 1

m�
. �1.10�

Note that �2�0 corresponds to the SDW phase in Fig. 1
while �2�0 corresponds to the normal phase of Fig. 1. For
�2�0, we can also characterize this coupling by the value of
the spinon energy gap �z in the N=� theory, which is �as
will become clear below�

�z

m�v2 = 4��2. �1.11�

It is worth noting here that our minimal model �Eq. �1.4�� in
two spatial dimensions has aspects of the universal physics
of the Fermi gas at unitarity in three spatial dimensions. The
latter model has a “detuning” parameter that tunes the system
away from the Feshbach resonance; this is the analog of our
parameter �2. The overall energy scale is set in the unitary
Fermi gas by the Fermi energy; here, instead, we have two
energy scales, EF and m�v2.

The outline of the remainder of the paper is as follows. In
Sec. II, we will consider the pairing problem of the g� fer-
mions, induced by exchange in the gauge boson A�. We will
do this within a conventional Eliashberg framework. Our
main result will be a computation of the critical field Hc2,
which will be shown to be suppressed as SDW order is en-
hanced with decreasing t. Section III will consider the feed-
back of the superconductivity on the SDW ordering, where
we will find enhanced stability of the SDW order in the
metal over the superconductor. Section IV will summarize
our results, and propose a crossover phase diagram at non-
zero temperatures.

II. ELIASHBERG THEORY OF PAIRING

In our minimal model, the charge and spin excitations
interact with each other through the A� gauge boson. So the
gauge fluctuation is one of the key ingredients in our analy-
sis. We begin by computing the gauge propagator, and then
we will determine the critical temperature and magnetic field
within the Eliashberg theory in the following subsections.

We use the framework of the large N expansion. In the
limit N=�, the gauge field is suppressed, and the constraint
field � takes a saddle-point value �i�=m2� that makes the
spinon action extremum in Eq. �1.6�. At leading order, the
spinon propagator has the form

t

v2k2 + �n
2 + m2 , �2.1�

where k is spatial momentum and �n is the Matsubara fre-
quency. The saddle-point equation for m is

T	
�n

� d2k

4�2� 1

v2k2 + �n
2 + m2�

= − m��2 +� d�

2�
� d2k

4�2

1

v2k2 + �2 . �2.2�

The solution of this is

m = 2T ln� e+2�m�v2�2/T + �e+4�m�v2�2/T + 4

2
� , �2.3�

which holds for −���2��. This result is plotted in Fig. 3.
Clearly, m is a monotonically increasing function of �2. Re-
call that the positive �2 region has no SDW order, and m is
large here. As we will see below, the value of m plays a
significant role in the photon propagators.

The photon propagator is determined from the effective
action obtained by integrating out the spinons and nonrela-
tivistic fermions. Using gauge invariance, we can write down
the effective action of the gauge field as follows:

SA =
NT

2 	
�n

� d2k

4�2��kiA� − �nAi�2D1�k,�n�
k2

+ AiAj��ij −
kikj

k2 �D2�k,�n�� . �2.4�

As in analogous computation with relativistic fermions in
Ref. 33, we separate the photon polarizations into their
bosonic and fermionic components:

D1 = ND1b + D1f ,

D2 = ND2b + D2f . �2.5�

We use the Coulomb gauge k ·A=0 in the computation. After
imposing the gauge condition, the propagator of A� from the
above action is 1 /D1 while that of Ai is

�0.010 �0.005 0.000 0.005 0.010
0

2
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Α2
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T

FIG. 3. �Color online� The parameter m in Eq. �2.1� for
T / �m�v2�=0.01.
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��ij −
kikj

k2 � 1

D2 + ��n
2/k2�D1

. �2.6�

We will approximate D1b and D2b by their zero-frequency
limits. Computation of the spinon polarization in this limit,
as in Ref. 33, yields

D1b�k� = −
T

�v2 ln�2 sinh� m

2T
��

+
1

2�v2�
0

1

dx�m2 + v2k2x�1 − x�

�coth��m2 + v2k2x�1 − x�
2T

� , �2.7�

and

D2b�k� =
v2k2

8�
�

0

1

dx
1

�m2 + v2k2x�1 − x�

�coth��m2 + v2k2x�1 − x�
2T

� . �2.8�

For the fermionic contributions, we include the contribution
of the g� fermions with effective mass m� and Fermi wave
vector kF. Calculation of the fermion compressibility yields

D1f�k,�n� = 2� d2q

4�2

�nF��q−k/2� − nF��q+k/2��
�i�n + k · q/m��

�
m�

�
,

�2.9�

where nF is the Fermi function. For the transverse propaga-
tor, we obtain from the computation of the fermion current
correlations

D2f�k,�n� +
�n

2

k2D1f�k,�n�

=
kF

2

2�m�
−

2

m�2� d2q

4�2

��q2 −
�q · k�2

k2 � �nF��q−k/2� − nF��q+k/2��
�i�n + k · q/m��

�
kF
�n


�k
. �2.10�

Putting all this together, we have the final form of the propa-
gators. The propagator of A� is

1

ND1b�k� + m�/�
, �2.11�

while that of Ai is

��ij −
kikj

k2 � 1

ND2b�k� + kF
�n
/��k�
. �2.12�

A. Eliashberg equations

We now address the pairing instability of the g� fermions.
Both the longitudinal and transverse photons contribute an

attractive interaction between the oppositely charged fermi-
ons, which prefers a simple s-wave pairing. However, we
also know that the transverse photons destroy the fermionic
quasiparticles near the Fermi surface, and so have a depair-
ing effect. The competition between these effects can be ad-
dressed in the usual Eliashberg framework.34 Based upon
arguments made in Refs. 35 and 36, we can anticipate that
the depairing and pairing effects of the transverse photons
exactly cancel each other in the low-frequency limits because
of the s-wave pairing. The higher frequency photons yield a
net pairing contribution below a critical temperature Tc,
which we compute below.

Closely related computations have been carried out by
Chubukov and Schmalian37 on a generalized model of pair-
ing due to the exchange in a gapless bosonic collective
mode; our numerical results for Tc below agree well with
theirs, where the two computations can be mapped onto each
other.38

The Eliashberg approximation starts from writing the fer-
mion Green function using Nambu spinor notation.

�̂��n� = i�n�1 − Z��n���̂0 + ��̂3 + 
��n��̂1,

G−1��,�n� = i�nZ��n��̂0 − ��̂3 − 
��n��̂1, �2.13�

where �̂ are the Pauli matrices in the particle-hole space.
Then self-consistency equation is constructed by evaluating
the self-energy with the above Green’s function, which
yields the following equation:

�̂��n� = T	
�m

� d2k�

4�2 Ĝ�k�,�m�D̃�q� ,k�,�m − �n�

= T	
�m

�tot��m − �n�� d��Ĝ���,�m� . �2.14�

Note that the first line is a formal expression, with

D̃�q� ,k� , i�m� being a combination of the photon propagator
and the matrix elements of the vertex. The equations are
therefore characterized by the coupling �tot��n�; computation
of the photon contribution yields the explicit expression39,40

�tot��n� = �T��n� + �L,

�T��n� =
kF

2�2m��
0

2kF

dk
�1 − �k/2kF�2

ND2b�k� + kF
�n
/��k�
,

�2.15�

�L =
m�

2�2kF
�

0

2kF dk
�1 − �k/2kF�2� 1

ND1b�k� + m�/�� .

�2.16�

We have divided the total coupling into two pieces based on
the different frequency dependence of the longitudinal and
transversal gauge boson propagators. The frequency inde-
pendent term will need a cutoff for the actual calculation as
we will see below. The typical behaviors of the dimension-
less couplings �T��n� ,�L are shown in Fig. 4.

COMPETITION BETWEEN SPIN DENSITY WAVE ORDER… PHYSICAL REVIEW B 80, 035117 �2009�

035117-5



The longitudinal coupling �L is around 0.35, and has a
significant dependence upon �2, which is a measure of the
distance from the SDW ordering transition. Note that �L is
larger in the SDW-disordered phase ��2�0�: this is a con-
sequence of the enhancement of gauge fluctuations in this
regime. This will be the key to the competing order effect we
are looking for: gauge fluctuations, and hence superconduc-
tivity, is enhanced when the SDW order is suppressed.

The transverse gauge fluctuations yield the frequency-
dependent coupling �T��n�. This is divergent at low frequen-
cies with39,40 �T��n��
�n
−1/3. As we noted earlier, this di-
vergent piece cancels out between the normal and anomalous
contributions to the fermion self-energy.35,36 We plot the de-
pendence of �T��n� on the coupling �2 for a fixed �n in Fig.
4. As was for the case of the longitudinal coupling, the trans-
verse contribution is larger in the SDW-disordered phase.

The full self-consistent Eliashberg equations are obtained
by matching the coefficients of the Pauli matrices term by
term.

i�n�1 − Z��n�� = − �T	
�m

�tot��m − �n�
i�m

��m
2 + �2��m�

,

�2.17�

Z��n����n� = �T	
�m

�tot��m − �n�
���m�

��m
2 + �2��m�

,

�2.18�

where ���n� is the frequency-dependent pairing amplitude.
Now we can solve the self-consistent equations to deter-

mine the boundary of the superconducting phase. Our goal is
to look for the critical temperature and magnetic field, and
we can linearize the equations in ���n� in these cases; in
other words we would neglect the gap functions in the de-
nominator.

Z��n� = 1 +
�T

�n
	
�n

sgn��n��T��n − �n�

= 1 +
�T


�n
 	

�n
�
�n


�T��n� . �2.19�

Then the solution of the critical temperature of linearized
Eliashberg equation is equivalent to the condition that the
matrix K��n ,�m� first has a positive eigenvalue, where

K��n,�m� = �T��n − �m� + �L���n − �m� − �n,m


�n
Z��n�
�T

,

�2.20�

with the soft cutoff function with cutoff EF

���n� �
1

1 + c1��n/EF�2 , �2.21�

where c1 is a constant of order unity. The cutoff EF is the
highest energy scale of the electronic structure so it is not
unnatural to set the cutoff with the scale. With this, the nu-
merics is well defined and we plot the resulting critical tem-
perature in Fig. 5.

For comparison, we show in Fig. 6 the results for Tc ob-
tained in a model with only the transverse interaction asso-
ciated with �T��n�. We can use this Tc to define an effective

transverse coupling, �̄T, by Tc /EF=exp�−1 / �̄T�. Using

Tc /EF�0.008 for �2�0 in Fig. 6, we obtain �̄T�0.2. This
is of the same order as the longitudinal coupling �L for �2
�0 in Fig. 4.

Bigger attractive interactions �T��n� and �L clearly induce
a higher critical temperature in the SDW-disordered region.
Note that this behavior is different from the one of previous
SDW-mediated superconductivity.27 �See the results of Fig. 4
in Ref. 28; near the critical region, Tc shows the opposite
behavior there.� We have also compared the plots obtained
by scaling Tc by m�v2 and EF. The dependencies on the
parameter �1 are reversed in two plots in the SDW-
disordered region. To interpret �1 as the doping related pa-
rameter, we should choose the scaling by m�v2 because the
mass m� and spin-wave velocity v are not affected much by
doping. With this scaling �the first plot in Fig. 5�, the critical
temperature rises with increased doping at fixed �2; of
course, in reality, �2 is also an increasing function of doping.

�0.04 �0.02 0.00 0.02 0.04

0.25

0.30

0.35

0.40

0.45

Α2

ΛL

�0.04 �0.02 0.00 0.02 0.04
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Α2

ΛT

(a)

(b)

FIG. 4. �Color online� The pairing coupling constants associated
with the longitudinal ��L� and transverse ��T��n�� gauge interac-
tions. The parameter �2 measures the distance from the SDW or-
dering transition in the metal, as defined in Eq. �1.10�. The dotted
�red�, dot-dashed �green�, dashed �blue�, and continuous �black�
lines correspond to �1

2 /2=EF / �m�v2�=0.16,0.21,0.26,0.29. We
show �T��n=8�T� with T / �m�v2�=0.016 for the transverse inter-
action. Note that �T��n� function is analytic near �2�0 in the mag-
nified scale.
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B. Critical field

This subsection will extend the above analysis to compute
the upper-critical magnetic field, Hc2 at T=0. We will neglect
the weak Zeeman coupling of the applied field, and assume
that it couples only to the orbital motion of the g� fermions.
This means that Lg in Eq. �1.5� is modified to

Lg = g+
†���� − iA�� −

1

2m�
��− iA − i�e/c�a�2 − �
g+

+ g−
†���� + iA�� −

1

2m�
��+ iA − i�e/c�a�2 − �
g−,

�2.22�

where ��a=H is the applied magnetic field.

Generally, the magnetic field induces nonlocal properties
in the Green’s function. However, in the vanishing gap limit,
Helfand and Werthamer proved that the nonlocality only ap-
pears as a phase factor �see Ref. 41�. The formalism has been
developed by Shossmann and Schachinger,42 and we will
follow their method. As they showed, in the resulting equa-
tion for Hc2, the magnetic field only appears in the modifi-
cation of the frequency renormalization Z��n�.

The Eliashberg equations in zero magnetic contain a term

�nZ��n�
, which comes from the inverse of the cooperon
propagator type at momentum q=0, C��n ,0�, where

C��n,q� =� d2p

4�2

1

�− i�nZ��n� + �p+q��i�nZ��n� + �−p�

� N�0��
0

2� d�

2�
�

−�

�

d�

�
1

�− i�nZ��n� + � + vFq cos ���i�nZ��n� + ��

=
2�N�0�

�4�n
2Z2��n� + vF

2q2
, �2.23�

where N�0� is the density of states at the Fermi level per
spin.

Now we discuss the extension of this to H=0, as de-
scribed in Refs. 41–43. For this, we need to replace C��n ,0�
by the smallest eigenvalue of the operator

L̂��n� =� d2�� d2q

4�2C��n,q�eiq·�e−i�·�̂, �2.24�

where �̂= p̂− �2e /
c�A�r̂�. Using Eq. �22� from Ref. 43, we

find that the smallest eigenvalue of L̂��n� is

L0��n� = �
0

�

�d��
0

�

qdqJ0�q��C��n,q�e−�2/�2rH
2 �

= rH
2�

0

�

qdqe−q2rH
2 /2C��n,q� , �2.25�

where rH=�
c /2eH is the magnetic length.
So the only change in the presence of a field is that the

wave-function renormalization Z��n� is replaced by ZH��n�,
where

1

ZH��n�
= 2
�n
rH

2�
0

�

qdq
e−q2rH

2 /2

�4�n
2Z2��n� + vF

2q2
�2.26�

=2
�n
�
0

�

xdx
e−x2/2

�4�n
2Z2��n� + vF

2rH
−2x2

. �2.27�

We can now insert the modified Z��n� in Eq. �2.27� into Eq.
�2.20�, and so compute Hc2 as a function of both �1 and the
SDW tuning parameter �2. The natural scale for the mag-
netic field is

�0.04 �0.02 0.00 0.02 0.04
0.00
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Tc

m� v2
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0.20
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Tc

EF

(a)

(b)

FIG. 5. �Color online� The critical temperature for superconduc-
tivity obtained by solution of the Eliashberg equations. The lines are
for the same parameter values as in Fig. 4. The top plot has critical
temperature scaled with m�v2, and the bottom is one scaled with EF.
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0.01
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FIG. 6. �Color online� As in the top panel of Fig. 5 but with only
the transverse pairing interaction, �T��n�, included.
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Hm � �
c

2e
�kF

2 � 534 T, �2.28�

where in the last step we have used values from the quantum
oscillation experiment1 quoted in Sec. I. Our results for
Hc2 /Hm are shown in Fig. 7. We can see that the critical-field
dependence on �2 is similar to the critical temperature de-
pendence: it is clear that SDW competes with superconduc-
tivity, and that Hc2 decreases as the SDW ordering is en-
hanced by decreasing �2. Also, we can compare this with the
phenomenological phase diagram of Fig. 1; the critical-field
line in Fig. 7 determines the line B-M-D within Eliashberg
approximation. Finally, the values of Hc2 in Fig. 7 are quite
compatible with the quantum oscillation experiments.1–6

III. SHIFT OF SDW ORDERING BY
SUPERCONDUCTIVITY

We are interested in the feedback on the strength of mag-
netic order due to the onset of superconductivity. Rather than
using a self-consistent approach, we will address the ques-
tion here systematically in a 1 /N expansion.

We will replace the fermion action in Eq. �1.5� by a theory
that has N /2 copies of the electron pockets

Lg = 	
a=1

N/2 �g+a
† ���� − iA�� −

1

2m�
��− iA�2 − ��g+a + g−a

†

����� + iA�� −
1

2m�
��+ iA�2 − ��

�g−a − �g+ag−a − �g−a
† g+a

† 
 . �3.1�

Here we consider the gauge boson fluctuation more rigor-
ously in the sense of accounting for full fermion and boson
polarization functions. But we will treat the fermion pairing
amplitude � as externally given: the previous section de-
scribed how it could be determined in the Eliashberg theory
with approximated polarization.

The large N expansion proceeds by integrating out the z�

and the g�a, and then expanding the effective action for �
and A�—formally this has the same structure as the compu-
tation in Ref. 33, generalized here to nonrelativistic fermi-
ons. At N=�, the g�a and z� remain decoupled because the
gauge propagator is suppressed by a prefactor of 1 /N. So at
this level, the magnetic critical point is not affected by the
presence of the fermions, and appears at t= tc

0, where

1

tc
0 =� d�d2k

8�3

1

�2 + v2k2 . �3.2�

We are interested in determining the 1 /N correction to the
magnetic quantum critical point, which we write as

1

tc���
=

1

tc
0 +

1

N
F��� , �3.3�

note that in the notation of Fig. 1, tc� tc���. The effect of
superconductivity on the magnetic order will therefore be
determined by F���−F�0�, which is the quantity to be com-
puted. The shift of the critical point at this order will be
determined by the graphs in Fig. 3 of Ref. 33, which are
reproduced here in Fig. 8. Evaluating these graphs we find

F��� =� d2qd�

8�3 � d2pd�

8�3

1

��2 + v2p2�2

�� 1

D1�q,��� �2� + ��2

�� + ��2 + v2�p + q�2 −
�2

�2 + v2q2�
+

1

�D2�q,�� + ��2/q2�D1�q,���
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FIG. 7. �Color online� The upper-critical field Hc2 as a function
of �1 and �2 using the same conventions as in Fig. 4. The magnetic
field is measured with the units induced by the fermion mass via Hm

defined in Eq. �2.28�.

(a)

(f)
(e)

(b)

(c) (d)

FIG. 8. Feynman diagrams for the self-energy of z� from Ref.
33. The full line represents z�, the wavy line is the A� propagator,
and the dashed line is the � propagator, which imposes the length
constraint on z�.
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�� 4v4�p2 − �pq�2/q2�
�� + ��2 + v2�p + q�2� +

1

���q,��

�� 1

�2 + v2q2 −
1

�� + ��2 + v2�p + q�2�� , �3.4�

where 1 /���q ,��=8��2+v2q2 is the propagator of the
Lagrange multiplier field �. The last term involving �� is
independent of �, and so will drop out of our final expres-
sions measuring the influence of superconductivity: we will
therefore omit this term in subsequent expressions for F���.

It is now possible to evaluate the integrals over p and �
analytically. This is done by using a relativistic method in
three space/time dimensions. Using a three-momentum nota-
tion in which P���vpi ,�� and Q���vqi ,��, and �P
�v2�d�d2p / �8�3�, some useful integrals obtained by dimen-
sional regularization are

�
P

1

P4 = 0,

�
P

1

P4�P + Q�2 = 0,

�
P

P�

P4�P + Q�2 = −
Q�

16Q3 ,

�
P

P�P�

P4�P + Q�2 =
���

32Q
+

Q�Q�

32Q3 . �3.5�

While some of the integrals above appear infrared divergent,
there are no infrared divergencies in the complete original
expression in Eq. �3.4�, and we have verified that dimen-
sional regularization does indeed lead to the correct answer
obtained from a more explicit subtraction of the infrared sin-
gularities. Using these integrals, we obtain from Eq. �3.4�

F��� =� d2qd�

8�3

q2

8��2 + v2q2�1/2� 1

��2 + v2q2�D1�q,��

+
1

q2D2�q,�� + �2D1�q,��� . �3.6�

The above expression was obtained in the Coulomb gauge
but we have verified that it is indeed gauge invariant.

We can now characterize the shift of the critical point in
the superconductor by determining the spinon gap, �z, at the
coupling t= tc�0�, where there is an onset of magnetic order
in the metal, i.e., the spinon gap in the superconductor at
H=0 at the value of t corresponding to the line CM in Fig. 1.
To leading order in 1 /N, this is given by

�z

m�v2 =
4�

m�� 1

tc���
−

1

tc�0�� =
4�

m�N
�F��� − F�0�� .

�3.7�

This expression encapsulates our main result on the back
action of the superconductivity of the g� fermions, with pair-
ing gap �, on the position of the SDW ordering transition.

Before we can evaluate Eq. �3.7�, we need the gauge-field
propagators D1,2. For completeness, we give explicit expres-
sions for the boson and fermionic contributions by writing

D2�q,�� +
�2

q2 D1�q,�� = DT
b�q,�� + DT

f �q,�� , �3.8�

D1�q,�� = DL
b�q,�� + DL

f �q,�� . �3.9�

We can read off the bosonic polarization functions DL,T
b �q ,��

from the exact relativistic result of Ref. 33, and Eq. �2.4�.

DT
b�q,�� =

�v2q2 + �2

16
, �3.10�

DL
b�q,�� =

1

16

q2

�v2q2 + �2
. �3.11�

For the fermion contribution, let us introduce the Nambu
spinor Green’s function

ḡ�q,�� =
1

�i��2 − Eq
2�i� + �q − �

− � i� − �q
� �3.12�

=� d�

�

1

� − i�
Im�ḡ�q,��� , �3.13�

Im�ḡ�q,��� =
�− ��
2Eq

���� − Eq� − ��� + Eq��

��� + �q − �

− � � − �q
� , �3.14�

where �q=q2 / �2m��−� and Eq=��q
2+�2. With the matrix

elements of longitudinal and transverse parts, the polariza-
tions of the fermions are

DL
f �q,�� = −� d2k

�2��2

d�

�2��
tr�ḡ�k,��ḡ�q + k,� + ���

=� d2k

�2��2� d��

�

d�

�

nF���� − nF���
i� + � − ��

�tr�Im ḡ�k,��Im ḡ�q + k,����

=� d2k

�2��2

1

2
�1 −

�k�k+q + �2

EkEk+q
�� 2�Ek + Ek+q�

�2 + �Ek + Ek+q�2� ,

DT
f �q,�� = DT,dia

f + DT,para
f , �3.15�

DT,para
f = −� d2k

�2��2

1

�m��2�k2 −
�kq�2

q2 �� d�

�2��

�tr�ḡ�k,���̂3ḡ�q + k,� + ���̂3�

= −� d2k

�2��2

k2 sin2 �

�m��2 � d�

�

d��

�

nF���� − nF���
i� + � − ��

�tr�Im ḡ�k,���̂3 Im ḡ�q + k,����̂3�

= −� d2k

�2��2

k2 sin2 �

�m��2

1

2
�1 −

�k�k+q − �2

EkEk+q
�
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�
2�Ek + Ek+q�

�2 + �Ek + Ek+q�2� , �3.16�

DT,dia
f =

� f

m�
, �3.17�

where � f is the density of the fermions and �̂3 is a Pauli
matrix in the Nambu particle-hole space. With these results
we are now ready to evaluate Eq. �3.7�.

One of the key features of the theory of competing orders
was the enhanced stability of SDW ordering in the metallic
phase. This corresponds to feature B discussed in Sec. I:
tc�0�� tc in Fig. 1. In the notation of our key result in Eq.
�3.7�, where tc���� tc, this requires �z�0. We show numeri-
cal evaluations of Eq. �3.7� in Fig. 9 and find this indeed is
the case. �The values of � used in Fig. 9 are similar to those
obtained in Sec. II near the SDW ordering critical point.�
Indeed, the sign of �z is easily understood. In the metallic
phase, the gauge fluctuations are quenched by excitations of
the Fermi surface. On the other hand, in the superconducting
state, this effect is no longer present: gauge fluctuations are
enhanced and hence SDW ordering is suppressed. Note the
fact that the g� fermions having opposite gauge charges is
crucial to this conclusion. The ordinary Coulomb interaction,
under which the g� have the same charge, continues to be
screened in the superconductor. In contrast, a gauge force
that couples with opposite charges has its polarizability
strongly suppressed in the superconductor, much like the re-
sponse of a BCS superconductor to a Zeeman field.

IV. CONCLUSIONS

This paper has described the phase diagram of a simple
minimal model of the underdoped hole-doped cuprates con-
tained in Eqs. �1.4�–�1.6�. This theory describes bosonic neu-
tral spinons z� and spinless charge −e fermion g� coupled
via a U�1� gauge field A�. We have shown that the theory
reproduces key aspects of a phenomenological phase
diagram14,16 of the competition between SDW order and su-
perconductivity in Fig. 1 in an applied magnetic field, H.
This phase diagram has successfully predicted a number of
recent experiments, as was discussed in Sec. I.

In particular, in Sec. II, we showed that the minimal
model had a Hc2 that decreased as the SDW ordering was

enhanced by decreasing the coupling t in Eq. �1.6�.
Next, in Sec. III, we showed that the onset of SDW or-

dering in the normal state with H�Hc2 occurred at a value
t= tc�0�, which was distinct from the value t= tc��� in the
superconducting state with H=0. As expected from the com-
peting order picture in Fig. 1, we found tc�0�� tc���. The
enhanced stability of SDW ordering in the metal was a con-
sequence of the suppression of A� gauge fluctuations by the
g� Fermi surfaces. These Fermi surfaces are absent in the
superconductor, and as a result the gauge fluctuations are
stronger in the superconductor.

We conclude this paper by discussing the implications of
our results for the phase diagram at T�0, and in particular
for the pseudogap regime above Tc. In our application of the
main result in Sec. III, tc�0�� tc���, we have assumed that
the �=0 state was reached by application of a magnetic field.
However, this result also applies if � is suppressed by ther-
mal fluctuations above Tc. Unlike H, thermal fluctuations
will also directly affect the SDW order, in addition to the
indirect effect through suppression of superconductivity. In
particular in two spatial dimensions there can be no long-
range SDW order at any T�0. These considerations lead us
to propose the crossover phase diagram in Fig. 10 in the T, t
plane. We anticipate that tc�0� is near optimal doping. Thus
in the underdoped regime above Tc, there is local SDW order
that is disrupted by classical thermal fluctuations: this is the
so-called “renormalized classical26” �RC� regime of the hid-
den metallic quantum critical point at tc�0�. Going below Tc
in the underdoped regime, we eventually reach the regime
controlled by the quantum critical point associated with
SDW ordering in the superconductor, which is at tc���. Be-
cause tc���� tc�0�, the SDW order can now be “quantum

0.2 0.25 0.3 0.35 0.4
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0.015

0.02
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10 �

m� v2

�z

m� v2

FIG. 9. �Color online� The energy �z in Eq. �3.7� determining
the value of the shift in the SDW ordering critical point, tc�0�
− tc���. The horizontal axis is the externally given superconducting
gap. For numerics we fix the parameter �1 /2=EF /m�v2=0.3

T

SC

SC+
SDW

Small Fermi pockets
with pairing fluctuations

(RC)

Large
Fermi surface

(QD)

Strange metal

(QC)

RC

QC

QD

tc ttc(0)

FIG. 10. �Color online� Proposed finite temperature crossover
phase diagram for the cuprates. The labels at T=0 are as in Fig. 1:
the onset of SDW order in the superconductor is at tc� tc���, while
tc�0� is a “hidden” critical point that can be observed only at H
�Hc2 as in Fig. 1. The computations in Sec. III show that tc�0�
� tc���. The full line is the phase transition at Tc representing loss
of superconductivity. The dashed lines are crossovers in the fluctua-
tions of the SDW order. The dotted lines are guides to the eye and
do not represent any crossovers. Thus, in the pseudogap regime at
T�Tc the SDW fluctuations are in the RC �Ref. 26� regime; upon
lowering temperature, they crossover to the QC and QD regimes in
the superconductor.
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disordered” �QD�. Thus neutron scattering in the supercon-
ductor will not display long-range SDW order as T→0, even
though there is a RC regime of SDW order above Tc. This
QD region will have enhanced charge order
correlations;7,16,17,44 this charge order can survive as true
long-range order below Tc, even though the SDW order does
not. Thus we see that in our theory the underlying competi-
tion is between superconductivity and SDW order while
there can be substantial charge order in the superconducting
phase.

Further study of the nature of the quantum critical point at
tc�0� in the metal is an important direction for further re-
search. In our present formulation in Eq. �1.4�, this point is a
transition from a conventional metallic SDW state to an “al-
gebraic charge liquid25” in the O�4� universality class.7 How-
ever, an interesting alternative possibility is a transition di-
rectly to the large Fermi-surface state.45 Finally, we note that
a number of experimental studies32,46–51 have discussed a
scenario for crossover in the cuprates, which is generally
consistent with our Fig. 10.
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APPENDIX: FIELD RELATIONS FROM SPIN DENSITY
WAVE THEORY

This appendix will give a derivation of relation �1.2� be-
tween the physical electron operators c�, and the fields g�

and z� using spin density wave theory. This will complement
the derivation obtained from the doped Mott insulator ap-
proach in previous works.7,8

We begin the quasiparticle Hamiltonian, which deter-
mines the “large” Fermi surface in the overdoped regime

H0 = − 	
i�j

tijci�
† cj� � 	

k
�kck�

† ck�, �A1�

where we choose the dispersion �k to agree with the mea-
sured Fermi surface. In the presence of spin density wave
order �� at wave vector K= �� ,��, we have an additional

term that mixes electron states with momentum separated by
K

Hsdw = − �� · 	
k,�,	

ck,�
† �� �	ck+K,	, �A2�

where �� are the Pauli matrices.
Now we focus on the electrons which are near the elec-

tron pockets. Let us write

c�0,��� � c1�, c��,0�� � c2�, �A3�

and ��0,��=���,0�=�0. Then, for Néel order polarized as ��
= �0,0 ,�� with ��0, the Hamiltonian for these electrons is

H0 + Hsdw = �0�c1�
† c1� + c2�

† c2��

− ��c1↑
† c2↑ − c1↓

† c2↓ + c2↑
† c1↑ − c2↓

† c1↓� .

�A4�

We diagonalize this by writing

H0 + Hsdw = ��0 − ���g+
†g+ + g−

†g−� + ��0 + ���h+
†h+ + h−

†h−� ,

�A5�

where

c1↑ = �g+ + h+�/�2,

c2↑ = �g+ − h+�/�2,

c1↓ = �g− + h−�/�2,

c2↓ = �− g− + h−�/�2. �A6�

Now the main approximation we make here is to neglect the
higher energy h� fermions. We obtain the electron operators
for a general polarization of the Néel order as in Eq. �1.1� by
performing an SU�2� rotation defined by the z� �and drop-
ping the unimportant factor of 1 /�2�

�c1↑

c1↓
� = Rz�g+

g−
� ; �c2↑

c2↓
� = Rz� g+

− g−
� , �A7�

where the SU�2� rotation is

Rz = �z↑ − z↓
�

z↓ z↑
� � . �A8�

These results lead immediately to Eq. �1.2�. In the supercon-
ducting state, where �g+g−��0, they yield

�c1↑c1↓� = ��
z↑
2 + 
z↓
2�g+g−� ,

�c2↑c2↓� = − ��
z↑
2 + 
z↓
2�g+g−� , �A9�

which implies a d-wave pairing signature for the electrons.
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